Whitney constants and approximation of m-quasi-linear forms by m-linear forms

I.A. Vestfrid
Stella Maris road 28/11, 35511 Haifa, Israel

Received 3 December 2003; received in revised form 29 November 2004; accepted in revised form 8 December 2004

Communicated by Paul Nevai
Available online 21 January 2005

Abstract

We discuss some relations between Whitney constants $w_{m}\left(B_{X}, Y\right)$ for bounded functions from, the unit ball of a real normed space X into another real normed space Y. In particular, we generalize a result of Tsar'kov that $$
w_{m}^{l}\left(B_{X}, Y\right) \sim n^{(m-1) / 2} \quad \text { for } X=l_{2}^{n} \text { and for any } Y
$$ to any n-dimensional X (here w_{m}^{l} denotes linearized Whitney constant). © 2005 Elsevier Inc. All rights reserved.

MSC: 41A10

Keywords: Polynomial approximation; Whitney constants; Quasi-linear forms; Normed spaces

1. Introduction

X and Y denote real normed spaces throughout. The closed ball with center z and radius r is denoted by $B(z, r)$, and we write $B(0, r)=B(r)$ and $B(1)=B$ (or B_{E}, when we need to specify the space); S_{X} denotes the unit sphere of X. The Banach-Mazur distance between X and Y is denoted by $d(X, Y)$. If X has non-trivial type q, we denote its q-type constant by $T_{q}(X)$. For a set $A, \mathcal{B}(A, Y)$ denotes the normed space of bounded functions from A into

[^0]Y with the supremum norm. For a natural m, we denote by $L^{m}(X, Y)$ the normed space of bounded m-linear forms Ψ from X^{m} into Y with the usual norm
$$
\|\Psi\|=\sup \left\{\left\|\Psi\left(x_{1}, \ldots, x_{m}\right)\right\|:\left\{x_{i}\right\} \subset B_{X}\right\}
$$
and by $\mathcal{P}_{m}(X, Y)$ the linear space of polynomials of total degree at most m, that is, $p(x)=$ $\sum_{i=0}^{m} \Psi_{i}(x, \ldots, x)$ where $\Psi_{i} \in L^{i}(X, Y)$. For $A \subset X$ and $f \in \mathcal{B}(A, Y)$, we set
$$
E_{m}(f)=E_{m}(f ; A, Y)=\inf _{p \in \mathcal{P}_{m-1}} \sup _{x \in A}\|f(x)-p(x)\|
$$
and
$$
\omega_{m}(f)=\omega_{m}(f ; A, Y)=\sup \left\{\left\|\Delta_{h}^{m}(f ; x)\right\|:[x, x+m h] \subset A\right\}
$$
where
$$
\Delta_{h}^{m}(f ; x)=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} f(x+i h)
$$

We then define a Whitney constant $w_{m}(A, Y)$ by

$$
w_{m}(A, Y)=\sup \left\{E_{m}(f): f \in \mathcal{B}(A, Y) \text { and } \omega_{m}(f) \leqslant 1\right\}
$$

and a linearized Whitney constant $w_{m}^{l}(A, Y)$ by

$$
w_{m}^{l}(A, Y)=\inf _{L} \sup \left\{\|f-L f\|_{\mathcal{B}(A, Y)}: f \in \mathcal{B}(A, Y) \text { and } \omega_{m}(f) \leqslant 1\right\},
$$

where L runs through all linear operators $L: \mathcal{B}(A, Y) \longrightarrow \mathcal{P}_{m-1}(X, Y)$. (The last quantity is important because of the (computational) universality of linear approximation methods.) We shall write $w_{m}(X, Y)$ in place of $w_{m}\left(B_{X}, Y\right)$.

Tsar'kov [T] proved that $w_{m}^{l}\left(l_{2}^{n}, Y\right) \sim n^{(m-1) / 2}$ for any Y. For $m=2$, the author [V] (among other results) obtained, in fact, the following.

Proposition 1 (Vestfrid [V, Proposition 3.2]). Let $\operatorname{dim} X=n$ and $B_{X}(r) \subseteq A \subset B_{X}(R)$ be star-shaped with respect to the origin. Then there is an absolute constant k such that for every $1<q \leqslant 2$ and any Y,

$$
w_{2}^{l}(A, Y) \leqslant \frac{k}{q-1}\left(1+|\log (q-1)|+\log T_{q}(X)\right) d\left(l_{1}^{n}, X\right) R / r
$$

As it may be anticipated, approximation methods for individual functions can be better than a linear one. Brudnyi and Kalton [BK] showed, for example, that $w_{m}(X, \mathbf{R}) \leqslant$ $C n^{(m-2) / 2} \log (n+1)$ for $m \geqslant 2$ and for any n-dimensional X and that $w_{m}\left(l_{p}^{n}, \mathbf{R}\right) \leqslant$ $C n^{(m-3) / 2} \log (n+1)$ for $m \geqslant 3$ and $2 \leqslant p<\infty$. For technical reason, they introduced scalar m-quasi-linear functions and heavily used its approximation by m-linear forms. It seems us helpful to extend this concept to the multi-dimensional case as follows.

Definition 2 (cf. Brudnyi and Kalton [BK, p. 193]). Let A be a subset of X with $0 \in A$. Let $K \geqslant 0$. A map $f: A^{m} \longrightarrow Y$ is said to be (m, K)-quasi-linear if it satisfies the following
two conditions:
(1) $f\left(x_{1}, \ldots, x_{m}\right)=0$, whenever at least one $x_{i}=0$;
(2) for any $1 \leqslant j \leqslant m$ and any $\left\{x_{i}\right\}_{i \neq j} \subset A$, the map $f_{j}\left(x_{1}, \ldots x_{j-1}, x_{j+1}, \ldots, x_{m}\right)(x)=f\left(x_{1}, \ldots x_{j-1}, x, x_{j+1}, \ldots, x_{m}\right)$ satisfies $\omega_{2}\left(f_{j}\right.$ $\left.\left(x_{1}, \ldots x_{j-1}, x_{j+1}, \ldots, x_{m}\right) ; A, Y\right) \leqslant K$.
f is said to be homogeneously (m, K)-quasi-linear if its domain is the whole X^{m} and it is (m, K)-quasi-linear on B_{X}^{m} and homogeneous in each variable separately.
f is called an m-quasi-linear map if it is (m, K)-quasi-linear for some $K \geqslant 0$.
We denote by $Q L^{m}(A, Y)$ the linear space of bounded m-quasi-linear maps from A into Y.

We shall abbreviate "quasi-linear" by QL.
In this paper, we obtain some relations between Whitney constants, which yields, in particular, a generalization of Tsar'kov's result to any n-dimensional X (Theorem 6 and Remark 7) and, in a combination with results of Brudnyi and Kalton, gives a sharp estimate $w_{2}\left(l_{p}^{n},\left(l_{p}^{n}\right)^{*}\right) \sim w_{3}\left(l_{p}^{n}, \mathbf{R}\right) \sim \log (n+1)$, if $p=1$ or $2 \leqslant p<\infty$ (see Remark 10(ii)). One of the keys is Proposition 3 on approximation of bounded m-quasi-linear forms by m-linear forms.

2. Results

Proposition 3. Let $B_{X}(r) \subseteq A \subset B_{X}(R)$ be star-shaped with respect to the origin. Let $f: A^{m} \longrightarrow Y$ be a bounded (m, K)-QL map. Then there are a constant C_{m}, depending only on m, and a continuous m-linear form $\Psi_{m}: X^{m} \longrightarrow Y$ such that

$$
\begin{align*}
& \left\|f\left(x_{1}, \ldots, x_{m}\right)-\Psi_{m}\left(x_{1}, \ldots, x_{m}\right)\right\| \\
& \quad \leqslant C_{m} w_{2}(A, Y) \prod_{i=1}^{m-1} w_{2}\left(A, L^{i}(X, Y)\right) K(R / r)^{m-1} \tag{1}
\end{align*}
$$

for every $\left\{x_{i}\right\} \subset A$.
Proof. We shall prove by induction on m. By the definitions, the proposition holds for $m=1$ (with any $C_{1}>1$). Assume it holds for some $m \geqslant 1$, and let f be an $(m+1, K)$-QL map. Then for every $\left\{x_{i}\right\}_{i \leqslant m} \subset A, \omega_{2}\left(f_{m+1}\left(x_{1}, \ldots, x_{m}\right) ; A, Y\right) \leqslant K$. By the definition of $w_{2}(A, Y)$, there is a linear bounded operator $F\left(x_{1}, \ldots, x_{m}\right): X \longrightarrow Y$ for every m-tuple $\left(x_{1}, \ldots, x_{m}\right) \in A^{m}$ such that $F\left(x_{1}, \ldots, x_{m}\right) \equiv 0$, whenever at least one $x_{i}=0$ and

$$
\begin{equation*}
\left\|f_{m+1}\left(x_{1}, \ldots, x_{m}\right)(x)-F\left(x_{1}, \ldots, x_{m}\right) x\right\| \leqslant w_{2}(A, Y) K \tag{2}
\end{equation*}
$$

for all $x \in A$.
Now regard $F\left(x_{1}, \ldots, x_{m}\right)$ as a map from A^{m} into $L(X, Y)$. Let $1 \leqslant j \leqslant m$ and $\left\{x_{i}\right\}_{i \neq j}$ $\subset A$, and denote $F_{j}=F_{j}\left(x_{1}, \ldots x_{j-1}, x_{j+1}, \ldots, x_{m}\right)$. Then for every $u, x \in A$ and $h \in X$
with $[u, u+2 h] \subset A$, we have by (2)

$$
\begin{aligned}
\left\|\left(\Delta_{h}^{2}\left(F_{j} ; u\right)\right)(x)\right\| \leqslant & \| f\left(x_{1}, \ldots x_{j-1}, u, x_{j+1}, \ldots, x_{m}, x\right) \\
& -F\left(x_{1}, \ldots x_{j-1}, u, x_{j+1}, \ldots, x_{m}\right) x \| \\
& +2 \| f\left(x_{1}, \ldots x_{j-1}, u+h, x_{j+1}, \ldots, x_{m}, x\right) \\
& -F\left(x_{1}, \ldots x_{j-1}, u+h, x_{j+1}, \ldots, x_{m}\right) x \| \\
& +\| f\left(x_{1}, \ldots x_{j-1}, u+2 h, x_{j+1}, \ldots, x_{m}, x\right) \\
& -F\left(x_{1}, \ldots x_{j-1}, u+2 h, x_{j+1}, \ldots, x_{m}\right) x \| \\
& +\left\|\Delta_{h}^{2}\left(f_{j}\left(x_{1}, \ldots x_{j-1}, x_{j+1}, \ldots, x_{m}, x\right) ; u\right)\right\| \\
\leqslant & 4 w_{2}(A, Y) K+K
\end{aligned}
$$

Thus, F is $\left(m, 5 w_{2}(A, Y) K / r\right)$-QL, and by the induction hypothesis, there is a continuous m-linear form $\Psi_{m}: X^{m} \longrightarrow L(X, Y)$ such that

$$
\begin{align*}
& \left\|F\left(x_{1}, \ldots, x_{m}\right)-\Psi_{m}\left(x_{1}, \ldots, x_{m}\right)\right\| \\
& \quad \leqslant 5 C_{m} w_{2}(A, Y) K / r \prod_{i=1}^{m} w_{2}\left(A, L^{i}(X, Y)\right)(R / r)^{m-1} . \tag{3}
\end{align*}
$$

Now set $\Psi_{m+1}\left(x_{1}, \ldots, x_{m+1}\right)=\Psi_{m}\left(x_{1}, \ldots, x_{m}\right)\left(x_{m+1}\right)$. Then by (2) and (3),

$$
\begin{aligned}
& \left\|f\left(x_{1}, \ldots, x_{m+1}\right)-\Psi_{m+1}\left(x_{1}, \ldots, x_{m+1}\right)\right\| \\
& \quad \leqslant\left\|f\left(x_{1}, \ldots, x_{m+1}\right)-F\left(x_{1}, \ldots, x_{m}\right) x_{m+1}\right\| \\
& \quad+\left\|\left(F\left(x_{1}, \ldots, x_{m}\right)-\Psi_{m}\left(x_{1}, \ldots, x_{m}\right)\right)\left(x_{m+1}\right)\right\| \\
& \quad \leqslant w_{2}(A, Y) K+5 C_{m} w_{2}(A, Y) \prod_{i=1}^{m} w\left(A, L^{i}(X, Y)\right) K(R / r)^{m-1}\left\|x_{m+1}\right\| / r,
\end{aligned}
$$

which completes the proof.
Remark 4. (i) An inspection of the above proof also gives the following:
Let $B_{X}(r) \subseteq A \subset B_{X}(R)$ be star-shaped with respect to the origin. Then there are a constant C_{m}, depending only on m, and a linear projector
$L: Q L^{m}(A, Y) \longrightarrow L^{m}(X, Y)$ such that for every bounded (m, K)-QL map $f: A^{m} \longrightarrow Y$, we have

$$
\begin{aligned}
& \left\|f\left(x_{1}, \ldots, x_{m}\right)-L f\left(x_{1}, \ldots, x_{m}\right)\right\| \\
& \quad \leqslant C_{m} w_{2}^{l}(A, Y) \prod_{i=1}^{m-1} w_{2}^{l}\left(A, L^{i}(X, Y)\right) K(R / r)^{m-1}
\end{aligned}
$$

for every $\left\{x_{i}\right\} \subset A$.
(ii) In particular, inequality (1) in Proposition 3 holds for every $\left\{x_{i}\right\} \subset r S_{X}$. Hence if f is homogeneously (m, K)-QL, we can take $A=B_{X}$ and then rewrite (1) as

$$
\begin{aligned}
& \left\|f\left(x_{1}, \ldots, x_{m}\right)-\Psi_{m}\left(x_{1}, \ldots, x_{m}\right)\right\| \\
& \quad \leqslant C_{m} w_{2}(X, Y) \prod_{i=1}^{m-1} w_{2}\left(X, L^{i}(X, Y)\right) \prod_{i=1}^{m}\left\|x_{i}\right\| K
\end{aligned}
$$

for all $\left\{x_{i}\right\} \subset X$.

Theorem 5. For any $m \geqslant 2$ there is a constant C_{m}, depending only on m, such that

$$
w_{m}(X, Y) \leqslant C_{m} w_{2}(X, Y) \prod_{i=1}^{m-2} w_{2}\left(X, L^{i}(X, Y)\right)
$$

Proof. For all integers $0 \leqslant i \leqslant m-1$ and $1 \leqslant j \leqslant m$, choose real numbers $c_{i j}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{m} c_{i j}(j / m)^{k}=\delta_{i k} \tag{4}
\end{equation*}
$$

for $0 \leqslant i, k \leqslant m-1$.
Let $f \in \mathcal{B}\left(B_{X}, Y\right)$ and $\omega_{m}\left(f ; B_{X}, Y\right) \leqslant 1$. Then for each $x \in S_{X}$ and $1 \leqslant i \leqslant m-1$ we define $f_{i}(x)=\sum_{j=1}^{m} c_{i j} f(j x / m)$ and extend f_{i} to all X to be i-homogeneous (that is, $f_{i}(t x)=t^{i} f(x)$ for $\left.t \in \mathbf{R}, x \in X\right)$. We also define $f_{0}(x) \equiv f(0)$. Then, there is $C=C(m)$ so that

$$
\left\|f(x)-\sum_{i=0}^{m-1} f_{i}(x)\right\| \leqslant C
$$

(see, for example, [BK, pp. 169-170]).
Suppose now that $g: X \longrightarrow Y$ is locally bounded and k-homogeneous. Define the separately homogeneous map $G: X^{k} \longrightarrow Y$ by

$$
G\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{2^{k} k!} \sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \ldots \varepsilon_{k} g\left(\sum_{i=1}^{k} \varepsilon_{i} x_{i}\right)
$$

for $\left\{x_{i}\right\} \subset S_{X}$ and extend it by homogeneity. Then there is $C_{k}=C(k)$ so that G is homogeneously ($k, C_{k} \omega_{k+1}\left(g ; B_{X}, Y\right)$)-quasi-linear (see [BK, Lemma 5.4]). Note also that $G(x, \ldots, x)=g(x)$.

Combining all this with Remark 4(ii) implies the theorem.
The same proof combined with Remark 4(i) gives us the following generalization of Tsar'kov's result.

Theorem 6. For any $m \geqslant 2$ there is a constant C_{m}, depending only on m, such that

$$
w_{m}^{l}(X, Y) \leqslant C_{m} w_{2}^{l}(X, Y) \prod_{i=1}^{m-2} w_{2}^{l}\left(X, L^{i}(X, Y)\right)
$$

Remark 7. Theorem 6 combined with Proposition 1 implies, in particular, that for $1<p$ $<\infty$ there is a constant $C(m, p)$, depending only on m and p, such that

$$
\begin{equation*}
w_{m}^{l}\left(l_{p}^{n}, Y\right) \leqslant C(m, p) d\left(l_{1}^{n}, l_{p}^{n}\right)^{m-1} \tag{5}
\end{equation*}
$$

Thus indeed, Theorem 6 generalizes Tsar'kov's result.

The following counterpart of Theorem 5 is essentially contained in Kalton [K], but the author cannot conclude the result from there; we give the proof for the completeness and convenience of the reader.

Proposition 8. There is an absolute constant C with the following property:
Let X be a normed space, and put $X^{\prime}=(X \oplus X)_{p}$ for some $p \in[1, \infty]$. Then

$$
w_{2}(X, L(X, Y)) \leqslant C w_{3}\left(X^{\prime}, Y\right)
$$

To prove this we need the next assertion. Kalton [K, the proof of Theorem 2.2] implicitly obtained it for $X=l_{2}^{n}, Y=\mathbf{R}$, but his argument, actually, yields the more general Lemma 9 .

Lemma 9. There is an absolute constant C with the following property:
Let $g: X \longrightarrow L(X, Y)$ be a 1-homogeneous locally bounded map with

$$
\left\|g\left(x_{1}+x_{2}\right)-g\left(x_{1}\right)-g\left(x_{2}\right)\right\| \leqslant 1, \quad x_{1}, x_{2} \in B_{X}
$$

Put $X^{\prime}=(X \oplus X)_{p}$ for some $p \in[1, \infty]$. Then for every $\delta>0$ there is a bounded linear operator $F_{\delta}: X \longrightarrow L(X, Y)$ with

$$
\left\|g(x)-F_{\delta} x\right\| \leqslant C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\|x\|
$$

for all $x \in X$.
Proof. Put $q(x)=g(x) x: X \longrightarrow Y$, and observe that q is 2-homogeneous. Since

$$
\Delta_{h}^{3}(q ; x)=\left(3 \Delta_{h}^{2}(g ; x+h)-\Delta_{h}^{2}(g ; x)\right) x+3 \Delta_{h}^{2}(g ; x+h) h
$$

for every $x, h \in X$ with $x, x+3 h \in B_{X}$ we have by homogeneity of g

$$
\left\|\Delta_{h}^{3}(q ; x)\right\| \leqslant 6 .
$$

Now define $g^{\prime}(\mathbf{x})=\frac{1}{6}\left(0, g\left(x_{1}\right)\right): X^{\prime} \longrightarrow L\left(X^{\prime}, Y\right)$ if $\mathbf{x}=\left(x_{1}, x_{2}\right), x_{1}, x_{2} \in X$, and then put $q^{\prime}(\mathbf{x})=g^{\prime}(\mathbf{x}) \mathbf{x}=\frac{1}{6} g\left(x_{1}\right) x_{2}$. Then $\omega_{3}\left(q^{\prime} ; B_{X^{\prime}}, Y\right) \leqslant 1$ and, by the definition of $w_{3}\left(X^{\prime}, Y\right)$, for every $\delta>0$ there is a polynomial $p \in P_{2}\left(X^{\prime}, Y\right)$ with $\left\|q^{\prime}(\mathbf{x})-p(\mathbf{x})\right\| \leqslant$ $w_{3}\left(X^{\prime}, Y\right)+\delta$ on $B_{X^{\prime}}$.

By the 2-homogeneity of $q^{\prime}, q^{\prime}(\mathbf{x})=\sum_{j=1}^{3} c_{2 j} q^{\prime}(j \mathbf{x} / 3)$ where the coefficients $c_{2 j}$ are defined by (4) (with $m=3$). In virtue of (4), we also have that the polynomial $p^{\prime}(\mathbf{x})=$ $\sum_{j=1}^{3} c_{2 j} p(j \mathbf{x} / 3)$ is 2-homogeneous. Hence

$$
\left\|q^{\prime}(\mathbf{x})-p^{\prime}(\mathbf{x})\right\| \leqslant \sum_{j=1}^{3}\left|c_{2 j}\right|\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\|\mathbf{x}\|^{2}=C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\|\mathbf{x}\|^{2}
$$

for all $\mathbf{x} \in X^{\prime}$.

Since p^{\prime} is locally bounded, we can express it in the form $p^{\prime}(\mathbf{x})=\Psi(\mathbf{x}, \mathbf{x})$, where $\Psi: X^{\prime} \times X^{\prime} \longrightarrow Y$ is a continuous symmetric bilinear form. Consequently, there is a bounded linear operator $S: X^{\prime} \longrightarrow L\left(X^{\prime}, Y\right)$ such that $(S \mathbf{x}) \mathbf{y}=\Psi(\mathbf{x}, \mathbf{y})$. It follows that $(S \mathbf{x}) \mathbf{y}=(S \mathbf{y}) \mathbf{x}$. Define bounded linear operators S_{11}, S_{12}, S_{21} and S_{22} from X into $L(X, Y)$ by

$$
\begin{aligned}
\left(S_{11} x\right) y & =(S(x, 0))(y, 0), \\
\left(S_{12} x\right) y & =(S(x, 0))(0, y), \\
\left(S_{21} x\right) y & =(S(0, x))(y, 0), \\
\left(S_{22} x\right) y & =(S(0, x))(0, y)
\end{aligned}
$$

for $x, y \in X$. Then $\left(S_{21} x\right) y=\left(S_{12} y\right) x$, and for every $\varepsilon_{1}, \varepsilon_{2}= \pm 1$ we have

$$
\begin{aligned}
& \left\|\frac{1}{6} g\left(x_{1}\right) x_{2}-\varepsilon_{1} \varepsilon_{2} \sum_{j, k \leqslant 2} \varepsilon_{j} \varepsilon_{k}\left(S_{j k} x_{j}\right) x_{k}\right\| \\
& \quad=\left\|q^{\prime}\left(\left(\varepsilon_{1} x_{1}, \varepsilon_{2} x_{2}\right)\right)-\Psi\left(\left(\varepsilon_{1} x_{1}, \varepsilon_{2} x_{2}\right),\left(\varepsilon_{1} x_{1}, \varepsilon_{2} x_{2}\right)\right)\right\| \\
& \quad \leqslant C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\|\mathbf{x}\|_{X^{\prime}}^{2} \\
& \quad \leqslant 2 C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\left(\left\|x_{1}\right\|_{X}^{2}+\left\|x_{2}\right\|_{X}^{2}\right)
\end{aligned}
$$

Averaging over choices of sign, we obtain

$$
\left\|\left(\frac{1}{6} g\left(x_{1}\right)-2\left(S_{12} x_{1}\right)\right) x_{2}\right\| \leqslant 2 C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right), \quad x_{1}, x_{2} \in X
$$

This leads to the desired inequality

$$
\left\|g(x)-12 S_{12} x\right\| \leqslant 24 C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\|x\|, \quad x \in X
$$

by putting $x_{1}=x$ and $\left\|x_{2}\right\|=\|x\|$.
Proof of Proposition 8. Let $f \in \mathcal{B}\left(B_{X}, L(X, Y)\right)$ and $\omega_{2}(f) \leqslant 1$. By translation, we can assume that $f(0)=0$. Set $g(x)=\|x\|\left(f\left(\frac{x}{2\|x\|}\right)-f\left(-\frac{x}{2\|x\|}\right)\right)$ for every $x \neq 0 \in X$, $g(0)=0$. Clearly, g is 1 -homogeneous. It is easy to check that

$$
\begin{equation*}
\|f(x)-g(x)\| \leqslant 2\|x\|+2 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|g(x+y)-g(x)-g(y)\| \leqslant 11(\|x\|+\|y\|) \leqslant 22 \tag{7}
\end{equation*}
$$

for $x, y \in B_{X}$ (see, for example, [V , Lemma 3.7 and proof of Proposition 3.6]). It follows from (7) and Lemma 9 that there are an absolute constant K and a bounded linear operator $F_{\delta}: X \longrightarrow L(X, Y)$ so that

$$
\left\|g(x)-F_{\delta} x\right\| \leqslant K\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right)\|x\|
$$

for any $\delta>0$ and for all $x \in X$. Restricting to $x \in B$ and using (6) give the desired inequality

$$
\left\|f(x)-F_{\delta} x\right\| \leqslant C\left(w_{3}\left(X^{\prime}, Y\right)+\delta\right), \quad x \in B
$$

Remark 10. (i) Again, an inspection of the above proof gives

$$
w_{2}^{l}(X, L(X, Y)) \leqslant C w_{3}^{l}\left(X^{\prime}, Y\right)
$$

with $X^{\prime}=(X \oplus X)_{p}$ for some $p \in[1, \infty]$.
(ii) In particular, it follows from Proposition 8 and estimates obtained by Brudnyi and Kalton [BK] that for any n-dimensional X

$$
w_{2}\left(X, X^{*}\right) \leqslant C w_{3}\left(X^{\prime}, \mathbf{R}\right) \leqslant C_{1} \min \left\{\sqrt{n}, T_{2}(X)^{2}\right\} \log (n+1) .
$$

Brudnyi and Kalton also obtained that
(1) $w_{2}\left(l_{p}^{n}, \mathbf{R}\right) \leqslant 1602$ for $2 \leqslant p \leqslant \infty$ (see [BK, Theorem 3.9(c)]);
(2) $w_{3}\left(l_{p}^{n}, \mathbf{R}\right) \sim \log (n+1)$ for $2 \leqslant p<\infty$, and $c \log (n+1) \leqslant w_{3}\left(l_{\infty}^{n}, \mathbf{R}\right) \leqslant C(\log (n+1))^{2}$ (see [BK, Theorem 4.3]);
(3) $w_{m}\left(l_{1}^{n}, \mathbf{R}\right) \sim \log (n+1)$ for any $m \geqslant 2$ (see [BK, Corollary 5.7]).

Thus by Proposition 8 and Theorem 5, we have

$$
w_{2}\left(l_{p}^{n},\left(l_{p}^{n}\right)^{*}\right) \sim w_{3}\left(l_{p}^{n}, \mathbf{R}\right) \sim \log (n+1) \quad \text { if } p=1 \text { or } 2 \leqslant p<\infty
$$

(observe that $w_{2}\left(l_{1}^{n}, l_{\infty}^{n}\right)=w_{2}\left(l_{1}^{n}, \mathbf{R}\right)$) and

$$
c \log (n+1) \leqslant w_{2}\left(l_{\infty}^{n}, l_{1}^{n}\right) \leqslant C(\log (n+1))^{2} .
$$

(It was obtained in [V, Propositions 3.6 and 4.25] by another way that $w_{2}\left(l_{2}^{n}, l_{2}^{n}\right) \sim$ $\log (n+1)$.)

Problem 11. Is it true that $w_{2}\left(X, X^{*}\right) \sim w_{3}(X, \mathbf{R})$ for all X ?

References

[BK] Y.A. Brudnyi, N.J. Kalton, Polynomial approximation on convex subsets of $\mathbf{R}^{\mathbf{n}}$, Constr. Approx. 16 (2000) 161-199.
[K] N.J. Kalton, A remark on quasi-isometries, Proc. Amer. Math. Soc. 131 (2003) 1225-1231.
[T] I.G. Tsar’kov, Linear methods in some smoothing problems, Math. Notes 56 (1994) 1255-1270.
[V] I.A. Vestfrid, Linear approximation of approximately linear functions, Aequationes Math. 66 (2003) 37-77.

[^0]: E-mail address: vestig@math.huji.ac.il

