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Abstract

We discuss some relations between Whitney constajtsBy, Y) for bounded functions from,
the unit ball of a real normed spadeinto another real normed spateIn particular, we generalize
a result of Tsarkov that

wh (Bx, ¥) ~n™=D/2 for x = %and for anyy

to anyn-dimensionalX (herew,’n denotes linearized Whitney constant).
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1. Introduction

X andY denote real normed spaces throughout. The closed ball with zantdrradius
is denoted byB(z, r), and we writeB(0, r) = B(r) andB(1) = B (or Bg, when we need to
specify the spacefy denotes the unit sphere &f The Banach—Mazur distance between
X andY is denoted by/(X, Y). If X has non-trivial typey, we denote itg-type constant
by T, (X). For asefA, B(A, Y) denotes the normed space of bounded functions Aamo
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Y with the supremum norm. For a natura) we denote by.” (X, Y) the normed space of
boundedm-linear forms¥ from X into Y with the usual norm

P = sup{ll¥'(x1, ..., xm)|l - {xi} C Bx}

and byP,, (X, Y) the linear space of polynomials of total degree at maghat is,p(x) =
Yoo Wilx,...,x)where?; € L'(X,Y).For AC X andf € B(A, Y), we set

En(f)=En(f;A,Y)= inf sup|f(x)—pQl

PEFm-1 xeA
and
On(f) = ou(f; A, Y) = sup{|1 4} (f; 0)ll: [x, x +mh] C A},

where
Ay (fix) =) (=1 (’?)f(x +ih).
i=0

We then define &Vhitney constantv,, (A, Y) by
wm (A, Y) =sup{En(f): f € B(A,Y) andw, (f) <1}
and alinearized Whitney constant!, (A, Y) by

wh (A, Y) = inf sup{llf — LfIB,v): f € B(A,Y) andw,, (f) <1},

whereL runs through all linear operatofs B(A, Y) — P, _1(X, Y). (The last quantity
is important because of the (computational) universality of linear approximation methods.)
We shall writew,, (X, Y) in place ofw,, (Bx, Y).

Tsarkov [T] proved thatw!, (15, Y) ~ n~V/2 for any Y. For m = 2, the authofV]
(among other results) obtained, in fact, the following.

Proposition 1 (Vestfrid[V, Proposition 3.2]). LetdimX = n andBx(r) € A C Bx(R)
be star-shaped with respect to the origin. Then there is an absolute constant k such that for
everyl < g <2and anyy,

wlz(A, Y)qu_l(1+ llog(g — 1)| + log T, (X))d (17, X)R/r.

As it may be anticipated, approximation methods for individual functions can be bet-
ter than a linear one. Brudnyi and KaltBK] showed, for example, that,, (X, R) <
Cn™=2/2 log(n+ 1) for m>2 and for anyn-dimensionalX and thatw,, (", R)<
Cn™=3/21og(n 4+ 1) for m>3 and 2<p < oco. For technical reason, they introduced
scalarm-quasi-linear functions and heavily used its approximatiomblynear forms. It
seems us helpful to extend this concept to the multi-dimensional case as follows.

Definition 2 (cf. Brudnyi and KaltoriBK, p. 193]). Let A be a subset ok with 0 € A.
LetK >0.Amapf: A™ — Y is said to b&m, K)-quasi-linear if it satisfies the following
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two conditions:
Q) f(x1,...,x,) =0, whenever at least onge = 0;
(2) forany 1< j<m and any{x;};«; C A, the map
fiGea, o ooxjo, X, o X)) (X)) = f(X, . X1, X, X4, . ,xm)SatiSfie&)z(fj
(X1, o X1, X, ey X)) A, Y)gK.
f is said to be homogeneously:, K)-quasi-linear if its domain is the whol€” and it is
(m, K)-quasi-linear omB¥ and homogeneous in each variable separately.
[ is called ann-quasi-linear map if it ism, K)-quasi-linear for som& > 0.
We denote byQL™ (A, Y) the linear space of bounded-quasi-linear maps fromt
into Y.
We shall abbreviate “quasi-linear” by QL.

In this paper, we obtain some relations between Whitney constants, which yields, in
particular, a generalization of Tsar’kov's result to amglimensionalX (Theorem6 and
Remark7) and, in a combination with results of Brudnyi and Kalton, gives a sharp estimate
wa (1, (zg)*) ~ w3(",R) ~ log(n + 1), if p = 1 or 2< p < oo (see Remark0(ii)).

One of the keys is Propositia® on approximation of boundeah-quasi-linear forms by
m-linear forms.

2. Results

Proposition 3. Let Bx(r) € A C Bx(R) be star-shaped with respect to the origin. Let
f: A" — Y be aboundedn, K)-QL map. Then there are a constafi};, depending only
onm, and a continuous m-linear fori,,,: X’ — Y such that

”f(xl» "'1xm) - le(xl» "'1xm)”

m—1

<Cuwa(4, ) [T wz (4, LX) K (R "
i=1

for every{x;} C A.
Proof. We shall prove by induction om. By the definitions, the proposition holds for

m =1 (with any C; > 1). Assume it holds for somern>1, and letf be an
(m + 1, K)-QL map. Then for everyx;}i <, C A, 02(fn+1(xX1. ..., xm); A, Y)<K.By

the definition ofw2(A, Y), there is a linear bounded operatbtxy, ..., x,;): X — Y
for everym-tuple(xy, ..., x,) € A™ such thatF (x1, ..., x,,) = 0, whenever at least one
x; =0and

| frnra(xa, oo Xm)(x) — Fx1, ..., xm)x || Sw2(A, Y)K (2)
forallx € A.

Now regardF (x1, ..., x,;) as a map fromA™ into L(X, V). Let 1< j <m and{x;};«;
C A,and denoté’; = Fj(x1,...Xj_1,Xj41,...,%,). Thenforevery, x € Aandh € X
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with [u, u + 2] C A, we have by 2)
H (Aﬁ(F,-;u)) (x)H SN Lo Xt Uy X 42 X X)

—F(x1,...xj-1,u,xj41, ..., Xu)x]|

+2) f(x1, ... xj_, u+h, X1, ., X, X)
—F(xy,...xj_,u+h, X1, .o, xp)x||
+lfGa, .o xj, u+2h,xj11, ..., Xim, X)
—F(x1,...xj-1,u~+2h,xj1,..., xp)x]|

+ ”A,zl(fj(xl, XL X gLy e Xy X5 u)H

< 4w (A, Y)K + K.
Thus,Fis (m, 5w2(A, Y)K /r)-QL, and by the induction hypothesis, there is a continuous
m-linear form¥,,: X™ — L(X, Y) such that
||F(xl5 LY 7xm) - lllm(xl, .. ,xm)”

m
<5Cuwa(A, V)K/r [ ] w2 (A, Li(X, Y)) (R/ry"1. 3)
i=1
Now setW,1(x1, ..., Xmr1) = P (x1, ..o, Xm) (g ). Then by (2) and (3)1
||f(x17 ) xm+l) - l‘Ili’l’l-f—:l.(-x:l.a ) .Xm_l,-]_)”
<IfGa, oo Xmad) — Flxa, oo, ) Xmall
FI(Fx1s -y xm) = (X1, - X)) G2

<wa(A, VK +5Cuuwz(A, V) [Tw (A4, L'CX 1)) KR/D" Haall/r,
i=1
which completes the proof.OJ

Remark 4. (i) An inspection of the above proof also gives the following:
Let Bx(r) € A C Bx(R) be star-shaped with respect to the origin. Then there are a
constantC,,, depending only om:, and a linear projector
L:QL™(A,Y) — L™(X,Y) such that for every boundédeh, K)-QL map
fiA™ — Y, we have
fxas oo xm) = Lf(xa, ooy x|l
m—1
<Cuwh(A, V) [T wh (A, Li(X, Y)) K(R/ry"1
i=1
for every{x;} C A.
(ii) In particular, inequality (1) in PropositioB holds for every{x;} C rSx. Hence if f
is homogeneouslyn, K)-QL, we can taked = By and then rewrite (1) as
1 e,y xm) — Pz x|
m—1 m
<Cowa X, V) [T wz (X /X, 1) [Tl
i=1 i=1
forall {x;} C X.
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Theorem 5. For anym > 2 there is a constant,,,, depending only on nguch that

m—2
W (X, V)< Crwa(X. ¥) [ ] w2 (X Li(X, Y)) .
i=1

Proof. For all integers 6Xi <m — 1 and 1< j <m, choose real numbers; satisfying

m
Zcij(j/m)k = Jik (4)
j=1
for0<i, k<m — 1.
Let f € B(Bx,Y) andw,,(f; Bx, Y)<1. Then for eachr € Sy and 1<i<m — 1 we
m

define f;(x) = Y ¢;jf(jx/m) and extendf; to all X to bei-homogeneous (that is,
j=1
fitx) =1t f(x)fort € R, x € X). We also defingp(x) = £(0). Then, there i€ = C(m)
so that
m—1
f) =Y fitx)
i=0

(see, for exampldBK, pp. 169-170]).
Suppose now that: X — Y is locally bounded and-homogeneous. Define the sepa-
rately homogeneous map: X¥ — Y by

k
1
G(x1,...,xx) = pom, Z &1...8k8 (ZSM,‘)
" ei—t1 i—1

for {x;} C Sx and extend it by homogeneity. Then thereCis= C (k) so thatG is ho-
mogeneouslyk, Crwr+1(g; Bx, Y))-quasi-linear (sefBK, Lemma 5.4]). Note also that
Gx,...,x) =gkx).

Combining all this with RemarK(ii) implies the theorem. [J

<C

The same proof combined with Rematli) gives us the following generalization of
Tsar’kov’s result.

Theorem 6. For anym > 2 there is a constant,,,, depending only on nsuch that

m—2
wy, (X, V) SCpw(X, ¥) [ wh(X, L'(X, V).
i=1

Remark 7. Theorem6 combined with Propositiot implies, in particular, that for k p
< oo there is a constartt (m, p), depending only om and p, such that

wh, (13, Y)<C(m, p)d (g, 1) . (5)

Thus indeed, Theoregeneralizes Tsar’kov’s result.
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The following counterpart of Theoregis essentially contained in KaltdK], but the
author cannot conclude the result from there; we give the proof for the completeness and
convenience of the reader.

Proposition 8. There is an absolute constant C with the following property:
Let X be a normed spacand putX’ = (X & X), for somep € [1, cc]. Then

w2 (X, L(X,Y)) <Cwsz (X', Y).

To prove this we need the next assertion. Ka[tdrthe proof of Theorem 2.2mplicitly
obtaineditforX =[5, ¥ = R, buthis argument, actually, yields the more general Lefdma

Lemma 9. There is an absolute constant C with the following property:
Letg: X — L(X,Y) be al-homogeneous locally bounded map with

llg(xs + x2) — g(x1) — g(x2)I <1, X1, X2 € By.
PutX’ = (X @ X), for somep € [1, oc]. Then for every > 0 there is a bounded linear
operatorF5: X — L(X,Y) with

llg(x) — Fsx|| <C (wa(X',Y) +6) |Ix|

forall x € X.

Proof. Putg(x) = g(x)x: X — Y, and observe thatis 2-homogeneous. Since
A3(q; x) = (3A%(g; x4+ h) — A2(g; x))x + 342(g: x + h)h

for everyx, h € X with x, x + 3h € Bx we have by homogeneity of
|47: 0| <.

Now defineg’(x) = %(0, g(x)): X' — L(X',Y) if X = (x1,x2), x1,x2 € X, and
then putg’(x) = g'(x)x = %g(x1)x2. Thenws(g’s By, Y)<1 and, by the definition
of w3(X’, Y), for everyo > 0 there is a polynomigh € P>(X’, Y) with ||’ (X) — p(X) || <
w3(X’,Y) + 6 onBy.

3
By the 2-homogeneity of’, ¢'(x) = Y c2;4'(jx/3) where the coefficientsy; are
j=1
defined by (4) (withve = 3). In virtue of (4), we also have that the polynomjd(x) =
3

> c2jp(jx/3)is 2-homogeneous. Hence

j=1
3

lg" 00 = p' OO < D lezjl (wa(X', ¥) + 8) IX|12 = € (w3(X'. ¥) + 6) [x||?
j=1

forall x e X'.
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Since p’ is locally bounded, we can express it in the fopfi{x) = ¥(x, x), where
Y:X' x X' — Y is a continuous symmetric bilinear form. Consequently, there is a
bounded linear operatdf: X’ — L(X’, Y) such that(Sx)y = Y(x,y). It follows that
(Sx)y = (Sy)x. Define bounded linear operatdts, S12, S21 andSz, from X into L(X, Y)

by

(S110)y = (S(x, 0)(y, 0),
(S12x)y = (S(x, 0)(0, y),
(S21x)y = (S(0, x))(y, 0),
(S22x)y = (S(0, x))(0, y)

for x, y € X. Then(S21x)y = (S12y)x, and for evengs, o = +1 we have

1
Hgg(xl)m — €162 Z ejer(Sjkx )Xk H
jk<2

= ll¢'((e1x1, £2x2)) — ¥ ((e1x1, £2x2), (€1x1, £2x2)) ||
<C (wa(X',Y) +6) X%
<2C (w3(X', ¥) + 8) (Ixall% + Ix21%)-
Averaging over choices of sign, we obtain
1(38(x1) — 2(S12x1))x2]| <2C (w3(X', ¥) + 6) (Ilxe? + Ix2®),  x1,x2 € X.
This leads to the desired inequality

llg(x) — 12812x || < 24C (w3 (X', Y) + ) [|x]l, xeX

by puttingx; = x and|jx2|| = ||x|. O

Proof of Proposition 8. Let f € B(Bx, L(X,Y))andw2(f)<1. By translation, we can

X X
assume thaf'(0) = 0. Set = - fl- for ever 0e X,
ume thaf () = . Sefs () IIXI|<f<2||x||) £( 2||x||)> veryx #0
g(0) = 0. Clearly,g is 1-homogeneous. It is easy to check that

If(x) —g)I<2]xll +2 (6)

and

llg(x +y) — g(x) — gMI<IL(Ixl + Iyl <22 7

for x, y € By (see, for exampldyV, Lemma 3.7 and proof of Proposition 3.6]). It follows
from (7) and Lemm& that there are an absolute constidrénd a bounded linear operator
Fs5: X — L(X,Y) so that

lg(x) = Fox|| <K (w3(X', ¥) + 0) I|x|
foranyo > Oandforallk € X.Restrictingtor € B and using (6) give the desired inequality

I f(x) — Fsx[|[<C (wa(X',Y)+0), xeB. [
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Remark 10. (i) Again, an inspection of the above proof gives
wh (X, L(X, Y)) <Cws(X', Y)

with X’ = (X & X), for somep € [1, oo].
(i) In particular, it follows from Propositior8 and estimates obtained by Brudnyi and
Kalton [BK] that for anyn-dimensionalX

wa(X, X*) < Cwz(X', R) < C1 min{/n, To(X)?} log(n + 1).

Brudnyi and Kalton also obtained that
(1) w21, R) <1602 for 2< p < oo (see[BK, Theorem 3.9(c)));
(2) wa(”,R) ~log(n+1)for2< p < oo, andc log(n+1)<<wa(l%,, R)<C(log(n+1))?
(see[BK, Theorem 43));
(3) wn (7, R) ~log(n+ 1) for anym > 2 (seg[BK, Corollary 5.7]).
Thus by Propositio and Theorend, we have

ws (1;, (z,)) ~w3(l",R) ~log(n+1) if p=1or2<p < oo
(observe thatvo (17, I%,) = w2(l7, R)) and

c log(n + 1) <wa(ll,, I§) < C(log(n + 1))°.

(It was obtained in[V, Propositions 3.6 and .25] by another way thatw,(i3, [5) ~
log(n+ 1).)

Problem 11. Is it true thatw,(X, X*) ~ w3(X, R) for all X?
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