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Abstract

We discuss some relations between Whitney constantswm(BX, Y ) for bounded functions from,
the unit ball of a real normed spaceX into another real normed spaceY . In particular, we generalize
a result of Tsar’kov that

wl
m(BX, Y ) ∼ n(m−1)/2 for X = ln2and for anyY

to anyn-dimensionalX (herewl
m denotes linearized Whitney constant).
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1. Introduction

X andY denote real normed spaces throughout. The closed ball with centerzand radiusr
is denoted byB(z, r), and wewriteB(0, r) = B(r) andB(1) = B (orBE , when we need to
specify the space);SX denotes the unit sphere ofX. The Banach–Mazur distance between
X andY is denoted byd(X, Y ). If X has non-trivial typeq, we denote itsq-type constant
byTq(X). For a setA,B(A, Y ) denotes the normed space of bounded functions fromA into
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Y with the supremum norm. For a naturalm, we denote byLm(X, Y ) the normed space of
boundedm-linear forms� fromXm into Y with the usual norm

‖�‖ = sup{‖�(x1, . . . , xm)‖ : {xi} ⊂ BX}
and byPm(X, Y ) the linear space of polynomials of total degree at mostm, that is,p(x) =∑m

i=0�i (x, . . . , x) where�i ∈ Li(X, Y ). For A⊂ X andf ∈ B(A, Y ), we set

Em(f ) = Em(f ;A, Y ) = inf
p∈Pm−1

sup
x∈A

‖f (x) − p(x)‖

and

�m(f ) = �m(f ;A, Y ) = sup
{‖�m

h (f ; x)‖: [x, x + mh] ⊂ A
}
,

where

�m
h (f ; x) =

m∑
i=0

(−1)m−i

(
m

i

)
f (x + ih).

We then define aWhitney constantwm(A, Y ) by

wm(A, Y ) = sup{Em(f ): f ∈ B(A, Y ) and�m(f )�1}
and alinearized Whitney constantwl

m(A, Y ) by

wl
m(A, Y ) = inf

L
sup

{‖f − Lf ‖B(A,Y ): f ∈ B(A, Y ) and�m(f )�1
}
,

whereL runs through all linear operatorsL:B(A, Y ) −→ Pm−1(X, Y ). (The last quantity
is important because of the (computational) universality of linear approximation methods.)
We shall writewm(X, Y ) in place ofwm(BX, Y ).

Tsar’kov [T] proved thatwl
m(ln2, Y ) ∼ n(m−1)/2 for anyY . For m = 2, the author[V]

(among other results) obtained, in fact, the following.

Proposition 1 (Vestfrid[V, Proposition 3.2]). Let dimX = n andBX(r) ⊆ A ⊂ BX(R)

be star-shaped with respect to the origin. Then there is an absolute constant k such that for
every1< q�2 and anyY ,

wl
2(A, Y )� k

q − 1
(1+ | log(q − 1)| + log Tq(X))d(ln1, X)R/r.

As it may be anticipated, approximation methods for individual functions can be bet-
ter than a linear one. Brudnyi and Kalton[BK] showed, for example, thatwm(X,R)�
Cn(m−2)/2 log(n+ 1) for m�2 and for anyn-dimensionalX and thatwm(lnp,R)�
Cn(m−3)/2 log(n + 1) for m�3 and 2�p < ∞. For technical reason, they introduced
scalarm-quasi-linear functions and heavily used its approximation bym-linear forms. It
seems us helpful to extend this concept to the multi-dimensional case as follows.

Definition 2 (cf. Brudnyi and Kalton[BK, p. 193]). Let A be a subset ofX with 0 ∈ A.
LetK�0.A mapf :Am −→ Y is said to be(m,K)-quasi-linear if it satisfies the following
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two conditions:
(1) f (x1, . . . , xm) = 0, whenever at least onexi = 0;
(2) for any 1�j �m and any{xi}i �=j ⊂ A, the map

fj (x1, . . . xj−1, xj+1, . . . , xm)(x) = f (x1, . . . xj−1, x, xj+1, . . . , xm)satisfies�2
(
fj

(x1, . . . xj−1, xj+1, . . . , xm); A, Y
)
�K.

f is said to be homogeneously(m,K)-quasi-linear if its domain is the wholeXm and it is
(m,K)-quasi-linear onBm

X and homogeneous in each variable separately.
f is called anm-quasi-linear map if it is(m,K)-quasi-linear for someK�0.
We denote byQLm(A, Y ) the linear space of boundedm-quasi-linear maps fromA

into Y .
We shall abbreviate “quasi-linear” by QL.

In this paper, we obtain some relations between Whitney constants, which yields, in
particular, a generalization of Tsar’kov’s result to anyn-dimensionalX (Theorem6 and
Remark7) and, in a combination with results of Brudnyi and Kalton, gives a sharp estimate

w2

(
lnp,

(
lnp

)∗) ∼ w3(l
n
p,R) ∼ log(n + 1), if p = 1 or 2�p < ∞ (see Remark10(ii)).

One of the keys is Proposition3 on approximation of boundedm-quasi-linear forms by
m-linear forms.

2. Results

Proposition 3. Let BX(r) ⊆ A ⊂ BX(R) be star-shaped with respect to the origin. Let
f :Am −→ Y be a bounded(m,K)-QLmap. Then there are a constantCm, depending only
onm, and a continuous m-linear form�m:Xm −→ Y such that

‖f (x1, . . . , xm) − �m(x1, . . . , xm)‖

�Cmw2(A, Y )

m−1∏
i=1

w2

(
A, Li(X, Y )

)
K(R/r)m−1 (1)

for every{xi} ⊂ A.

Proof. We shall prove by induction onm. By the definitions, the proposition holds for
m = 1 (with any C1 > 1). Assume it holds for somem�1, and let f be an
(m + 1,K)-QL map. Then for every{xi}i�m ⊂ A, �2

(
fm+1(x1, . . . , xm);A, Y

)
�K. By

the definition ofw2(A, Y ), there is a linear bounded operatorF(x1, . . . , xm):X −→ Y

for everym-tuple(x1, . . . , xm) ∈ Am such thatF(x1, . . . , xm) ≡ 0, whenever at least one
xi = 0 and

‖fm+1(x1, . . . , xm)(x) − F(x1, . . . , xm)x‖�w2(A, Y )K (2)

for all x ∈ A.
Now regardF(x1, . . . , xm) as a map fromAm into L(X, Y ). Let 1�j �m and{xi}i �=j

⊂ A, and denoteFj = Fj (x1, . . . xj−1, xj+1, . . . , xm). Then for everyu, x ∈ A andh ∈ X
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with [u, u + 2h] ⊂ A, we have by (2)∥∥∥(�2
h(Fj ; u)

)
(x)

∥∥∥ � ‖f (x1, . . . xj−1, u, xj+1, . . . , xm, x)

−F(x1, . . . xj−1, u, xj+1, . . . , xm)x‖
+ 2‖f (x1, . . . xj−1, u + h, xj+1, . . . , xm, x)

−F(x1, . . . xj−1, u + h, xj+1, . . . , xm)x‖
+ ‖f (x1, . . . xj−1, u + 2h, xj+1, . . . , xm, x)

−F(x1, . . . xj−1, u + 2h, xj+1, . . . , xm)x‖
+
∥∥∥�2

h

(
fj (x1, . . . xj−1, xj+1, . . . , xm, x); u

)∥∥∥
� 4w2(A, Y )K + K.

Thus,F is
(
m, 5w2(A, Y )K/r

)
-QL, and by the induction hypothesis, there is a continuous

m-linear form�m:Xm −→ L(X, Y ) such that

‖F(x1, . . . , xm) − �m(x1, . . . , xm)‖
�5Cmw2(A, Y )K/r

m∏
i=1

w2

(
A, Li(X, Y )

)
(R/r)m−1. (3)

Now set�m+1(x1, . . . , xm+1) = �m(x1, . . . , xm)(xm+1). Then by (2) and (3),

‖f (x1, . . . , xm+1) − �m+1(x1, . . . , xm+1)‖
�‖f (x1, . . . , xm+1) − F(x1, . . . , xm)xm+1‖

+ ‖(F(x1, . . . , xm) − �m(x1, . . . , xm)
)
(xm+1)‖

�w2(A, Y )K + 5Cmw2(A, Y )

m∏
i=1

w
(
A, Li(X, Y )

)
K(R/r)m−1‖xm+1‖/r,

which completes the proof.�

Remark 4. (i) An inspection of the above proof also gives the following:
Let BX(r) ⊆ A ⊂ BX(R) be star-shaped with respect to the origin. Then there are a

constantCm, depending only onm, and a linear projector
L:QLm(A, Y ) −→ Lm(X, Y ) such that for every bounded(m,K)-QL map
f :Am −→ Y , we have

‖f (x1, . . . , xm) − Lf (x1, . . . , xm)‖

�Cmwl
2(A, Y )

m−1∏
i=1

wl
2

(
A, Li(X, Y )

)
K(R/r)m−1

for every{xi} ⊂ A.
(ii) In particular, inequality (1) in Proposition3 holds for every{xi} ⊂ rSX. Hence iff

is homogeneously(m,K)-QL, we can takeA = BX and then rewrite (1) as

‖f (x1, . . . , xm) − �m(x1, . . . , xm)‖

�Cmw2(X, Y )

m−1∏
i=1

w2

(
X, Li(X, Y )

) m∏
i=1

‖xi‖K

for all {xi} ⊂ X.
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Theorem 5. For anym�2 there is a constantCm, depending only on m,such that

wm(X, Y )�Cmw2(X, Y )

m−2∏
i=1

w2

(
X, Li(X, Y )

)
.

Proof. For all integers 0� i�m − 1 and 1�j �m, choose real numberscij satisfying

m∑
j=1

cij (j/m)k = �ik (4)

for 0� i, k�m − 1.
Let f ∈ B(BX, Y ) and�m(f ;BX, Y )�1. Then for eachx ∈ SX and 1� i�m − 1 we

definefi(x) =
m∑

j=1
cij f (jx/m) and extendfi to all X to be i-homogeneous (that is,

fi(tx) = t if (x) for t ∈ R, x ∈ X).We also definef0(x) ≡ f (0). Then, there isC = C(m)

so that∥∥∥∥∥f (x) −
m−1∑
i=0

fi(x)

∥∥∥∥∥ �C

(see, for example,[BK, pp. 169–170]).
Suppose now thatg:X −→ Y is locally bounded andk-homogeneous. Define the sepa-

rately homogeneous mapG:Xk −→ Y by

G(x1, . . . , xk) = 1

2kk!
∑

εi=±1

ε1 . . . εkg

(
k∑

i=1

εixi

)

for {xi} ⊂ SX and extend it by homogeneity. Then there isCk = C(k) so thatG is ho-
mogeneously(k, Ck�k+1(g;BX, Y ))-quasi-linear (see[BK, Lemma 5.4]). Note also that
G(x, . . . , x) = g(x).
Combining all this with Remark4(ii) implies the theorem. �

The same proof combined with Remark4(i) gives us the following generalization of
Tsar’kov’s result.

Theorem 6. For anym�2 there is a constantCm, depending only on m,such that

wl
m(X, Y )�Cmwl

2(X, Y )

m−2∏
i=1

wl
2(X, Li(X, Y )).

Remark 7. Theorem6 combined with Proposition1 implies, in particular, that for 1< p

< ∞ there is a constantC(m, p), depending only onm andp, such that

wl
m(lnp, Y )�C(m, p)d(ln1, l

n
p)

m−1. (5)

Thus indeed, Theorem6 generalizes Tsar’kov’s result.
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The following counterpart of Theorem5 is essentially contained in Kalton[K], but the
author cannot conclude the result from there; we give the proof for the completeness and
convenience of the reader.

Proposition 8. There is an absolute constant C with the following property:
Let X be a normed space,and putX′ = (X ⊕ X)p for somep ∈ [1,∞]. Then

w2 (X, L(X, Y )) �Cw3(X
′, Y ).

To prove this we need the next assertion. Kalton[K, the proof of Theorem 2.2]implicitly
obtained it forX = ln2, Y = R, but his argument, actually, yields themoregeneral Lemma9.

Lemma 9. There is an absolute constant C with the following property:
Letg:X −→ L(X, Y ) be a1-homogeneous locally bounded map with

‖g(x1 + x2) − g(x1) − g(x2)‖�1, x1, x2 ∈ BX.

PutX′ = (X ⊕ X)p for somep ∈ [1,∞]. Then for every� > 0 there is a bounded linear
operatorF�:X −→ L(X, Y ) with

‖g(x) − F�x‖�C
(
w3(X

′, Y ) + �
) ‖x‖

for all x ∈ X.

Proof. Putq(x) = g(x)x:X −→ Y , and observe thatq is 2-homogeneous. Since

�3
h(q; x) = (

3�2
h(g; x + h) − �2

h(g; x))x + 3�2
h(g; x + h)h

for everyx, h ∈ X with x, x + 3h ∈ BX we have by homogeneity ofg∥∥∥�3
h(q; x)

∥∥∥ �6.

Now defineg′(x) = 1
6(0, g(x1)):X′ −→ L(X′, Y ) if x = (x1, x2), x1, x2 ∈ X, and

then putq ′(x) = g′(x)x = 1
6g(x1)x2. Then�3(q

′;BX′ , Y )�1 and, by the definition
of w3(X

′, Y ), for every� > 0 there is a polynomialp ∈ P2(X
′, Y ) with ‖q ′(x) − p(x)‖�

w3(X
′, Y ) + � onBX′ .

By the 2-homogeneity ofq ′, q ′(x) =
3∑

j=1
c2j q

′(jx/3) where the coefficientsc2j are

defined by (4) (withm = 3). In virtue of (4), we also have that the polynomialp′(x) =
3∑

j=1
c2jp(jx/3) is 2-homogeneous. Hence

‖q ′(x) − p′(x)‖�
3∑

j=1

|c2j |
(
w3(X

′, Y ) + �
) ‖x‖2 = C

(
w3(X

′, Y ) + �
) ‖x‖2

for all x ∈ X′.
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Sincep′ is locally bounded, we can express it in the formp′(x) = �(x, x), where
�:X′ × X′ −→ Y is a continuous symmetric bilinear form. Consequently, there is a
bounded linear operatorS:X′ −→ L(X′, Y ) such that(Sx)y = �(x, y). It follows that
(Sx)y = (Sy)x. Define bounded linear operatorsS11, S12, S21 andS22 fromX intoL(X, Y )

by

(S11x)y = (S(x, 0))(y, 0),

(S12x)y = (S(x, 0))(0, y),

(S21x)y = (S(0, x))(y,0),

(S22x)y = (S(0, x))(0, y)

for x, y ∈ X. Then(S21x)y = (S12y)x, and for everyε1, ε2 = ±1 we have∥∥∥1
6g(x1)x2 − ε1ε2

∑
j,k�2

εj εk(Sjkxj )xk

∥∥∥
= ‖q ′((ε1x1, ε2x2)) − � ((ε1x1, ε2x2), (ε1x1, ε2x2)) ‖
�C

(
w3(X

′, Y ) + �
) ‖x‖2X′

�2C
(
w3(X

′, Y ) + �
)
(‖x1‖2X + ‖x2‖2X).

Averaging over choices of sign, we obtain

‖(16g(x1) − 2(S12x1))x2‖�2C
(
w3(X

′, Y ) + �
)
(‖x1‖2 + ‖x2‖2), x1, x2 ∈ X.

This leads to the desired inequality

‖g(x) − 12S12x‖�24C
(
w3(X

′, Y ) + �
) ‖x‖, x ∈ X

by puttingx1 = x and‖x2‖ = ‖x‖. �

Proof of Proposition 8. Letf ∈ B (BX, L(X, Y )) and�2(f )�1. By translation, we can

assume thatf (0) = 0. Setg(x) = ‖x‖
(
f
( x

2‖x‖
)

− f
(
− x

2‖x‖
))

for everyx �= 0 ∈ X,

g(0) = 0. Clearly,g is 1-homogeneous. It is easy to check that

‖f (x) − g(x)‖�2‖x‖ + 2 (6)

and

‖g(x + y) − g(x) − g(y)‖�11(‖x‖ + ‖y‖)�22 (7)

for x, y ∈ BX (see, for example,[V, Lemma 3.7 and proof of Proposition 3.6]). It follows
from (7) and Lemma9 that there are an absolute constantK and a bounded linear operator
F�:X −→ L(X, Y ) so that

‖g(x) − F�x‖�K
(
w3(X

′, Y ) + �
) ‖x‖

for any� > 0and for allx ∈ X. Restricting tox ∈ B andusing (6) give thedesired inequality

‖f (x) − F�x‖�C
(
w3(X

′, Y ) + �
)
, x ∈ B. �



I.A. Vestfrid / Journal of Approximation Theory 132 (2005) 204–211 211

Remark 10. (i) Again, an inspection of the above proof gives

wl
2 (X, L(X, Y )) �Cwl

3(X
′, Y )

with X′ = (X ⊕ X)p for somep ∈ [1,∞].
(ii) In particular, it follows from Proposition8 and estimates obtained by Brudnyi and

Kalton [BK] that for anyn-dimensionalX

w2(X,X∗)�Cw3(X
′,R)�C1 min{√n, T2(X)2} log(n+ 1).

Brudnyi and Kalton also obtained that
(1) w2(l

n
p,R)�1602 for 2�p�∞ (see[BK, Theorem 3.9(c)]);

(2) w3(l
n
p,R) ∼ log(n+1) for 2�p < ∞, andc log(n+1)�w3(l

n∞,R)�C(log(n+1))2

(see[BK, Theorem 4.3]);
(3) wm(ln1,R) ∼ log(n+ 1) for anym�2 (see[BK, Corollary 5.7]).
Thus by Proposition8 and Theorem5, we have

w2

(
lnp,

(
lnp

)∗) ∼ w3(l
n
p,R) ∼ log(n+ 1) if p = 1 or 2�p < ∞

(observe thatw2(l
n
1, l

n∞) = w2(l
n
1,R)) and

c log(n+ 1)�w2(l
n∞, ln1)�C(log(n+ 1))2.

(It was obtained in[V, Propositions 3.6 and 4.25] by another way thatw2(l
n
2, l

n
2) ∼

log(n+ 1).)

Problem 11. Is it true thatw2(X,X∗) ∼ w3(X,R) for all X?
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